Full Scale Testing of a Concept for Salinity Regulation to Mitigate Sea Lice Infestation in Salmon Farming
Fishes ()
Åpen tilgang (gull)
6 Akvaplan-niva (nåværende ansatt)
Forfattere (8)
- Magnus Bjørn Drivdal
- Thor Magne Jonassen
- Albert Imsland
- karin Bloch-hansen
- Lars Olav Sparboe
- Claudia Halsband
- Kristine Hopland Sperre
- Tor Nygaard
Abstract
The large environmental and economic impact of sea lice infestation in the salmon industry has encouraged the development of non-medical methods and preventive strategies to combat sea lice infestation. Sea lice (Lepeophtheirus salmonis and Caligus elongatus) are sensitive to low salinities, and using fresh water as protection against infection may thus significantly reduce sea lice infestation of salmon while reducing the costs and impacts of traditional delousing methods. A new concept presented here is based on the manipulation of salinity within cages by adding fresh water to create an unfavourable environment for sea lice infestation. A full-scale set-up was tested in a salmon farm in northern Norway: two commercial-size cages with Atlantic salmon (Salmo salar) were enclosed with a 2 m deep tarpaulin skirt and supplied with fresh water at the centre to establish a surface layer with reduced salinity. Two reference cages had no skirt or fresh water supply. Time series of CTD-data showed that the fresh water supply caused a shallow and unstable salinity gradient, with salinities lower than 10 ppt measured for short periods in the upper 0.5 m. Despite these instabilities, significantly lower sea lice infestation in cages supplied with fresh water was observed, as infestation rates for pre-adult and adult stages of L. salmonis were reduced by 48% and 57%, respectively, in the treatment cages compared to controls. This preventive strategy is therefore very promising and deserves further development under more stable and controlled conditions. Future studies should focus on improving freshwater regulation, ensuring higher spatial resolution of salinity data in surface layers and documenting the effect on the more salinity-sensitive planktonic stages of L. salmonis. In addition, there is a need to examine the effectiveness of the technique at multiple sites and under a wide range of site conditions, especially various current rates through the site.