

Crumb rubber toxicity in coastal marine systems

Claudia Halsband^{*1}, Dorte Herzke², Jan H. Sundet³, Lisbet Sørensen⁴, Andy Booth⁴

¹Akvaplan-niva, Tromsø, Norway, ²NILU – Norwegian Institute for Air Research, Tromsø, Norway; ³Institute for Marine Research, Tromsø, Norway, ⁴Sintef Ocean, Trondheim, Norway * <u>claudia.halsband@akvaplan.niva.no</u>

The crumb rubber problem

In Norway, ~3 tonnes of crumb rubber are lost from soccer fields every year, in addition to tire wear from driving, and emissions from end-oflife car tire processing plants located near the sea $\rightarrow \geq 2000 \text{ t year}^{-1}$

Chemical analysis

Crumb rubber granulates and a range of concentrations of seawater leachates were analysed with a combination of

- conventional gas- and liquid chromatography mass spectrometry (GC-MS and LC-MS)
- pyrolysis gas chromatography MS (py-GC-MS)
- inductively coupled plasma MS (ICP-MS)

organic additives had

Benzothiazole and Zn were

concentrations in leachates,

the additives with highest

while PAH concentrations

remained lower than those

in the corresponding rubber

leached.

granulate.

Ingestion of crumb rubber

Framsenteret

Lumpfish

dissection

intestine content

Leachate toxicity

Reference: Halsband, C. et al. 2020. Frontiers in Environmental Science 8, 125

10 15 20 25 3

0 5 10 15 20 25 30

n-Cyclohexylformamide

1500

1000

500

5000

2500

2000

1500

500

목,1000

0 5 10 15 20 25 30

Benzothiazole